111 research outputs found

    A lattice of microtraps for ultracold atoms based on patterned magnetic films

    Full text link
    We have realized a two dimensional permanent magnetic lattice of Ioffe-Pritchard microtraps for ultracold atoms. The lattice is formed by a single 300 nm magnetized layer of FePt, patterned using optical lithography. Our magnetic lattice consists of more than 15000 tightly confining microtraps with a density of 1250 traps/mm2^2. Simple analytical approximations for the magnetic fields produced by the lattice are used to derive relevant trap parameters. We load ultracold atoms into at least 30 lattice sites at a distance of approximately 10 μ\mum from the film surface. The present result is an important first step towards quantum information processing with neutral atoms in magnetic lattice potentials.Comment: 7 pages, 7 figure

    Fabrication of magnetic atom chips based on FePt

    Full text link
    We describe the design and fabrication of novel all-magnetic atom chips for use in ultracold atom trapping. The considerations leading to the choice of nanocrystalline exchange coupled FePt as best material are discussed. Using stray field calculations, we designed patterns that function as magnetic atom traps. These patterns were realized by spark erosion of FePt foil and e-beam lithography of FePt film. A mirror magneto-optical trap (MMOT) was obtained using the stray field of the foil chip.Comment: 5 pages, 5 figure

    Pseudogap-less high Tc_{c} superconductivity in BaCox_{x}Fe2−x_{2-x}As2_{2}

    Get PDF
    The pseudogap state is one of the peculiarities of the cuprate high temperature superconductors. Here we investigate its presence in BaCox_{x}Fe2−x_{2-x}As2_{2}, a member of the pnictide family, with temperature dependent scanning tunneling spectroscopy. We observe that for under, optimally and overdoped systems the gap in the tunneling spectra always closes at the bulk Tc_{c}, ruling out the presence of a pseudogap state. For the underdoped case we observe superconducting gaps over large fields of view, setting a lower limit of tens of nanometers on the length scale of possible phase separated regions.Comment: 5 pages, 3 figure
    • …
    corecore